EBF feedback for ADA in non-clinical studies focusing on sampling, communication and evaluation of TK/PK

Susanne Pihl, on behalf of the EBF

13th EBF Open Symposium
N° 13 From Cyberspace - Staying Connected

http://www.e-b-f.eu
Prior Considerations

- Ensure reagents are available
- Likelihood of immune response
- Bank ADA samples

Business Risk

- Low
- High*

Frontloaded activity dependent on risk willingness

- No actions
- Assay is developed
- Assay is appropriately validated

Evaluation of study results

- No actions
- Yes

- Is further understanding of PK/TK/PD needed or are there signs of immunogenicity-related safety findings?

* Include unknown likelihood
Agenda

- Considerations for collecting ADA samples and if analysis of the samples are required based on observations in the non-clinical studies
- How to use the ADA results for reporting PK/TK evaluation, if analysed
- Examples
Collection of ADA samples

- According to ICH S6 collect ADA samples for banking and analyse, when required
- Rodents:
 - Limited sample volume and often sparse sampling
 - Collect samples from both main study and PK/TK animals
- Non-rodents:
 - Sufficient volume for collection of full PK/TK profiles in main study animals
- Collection timepoints:
 - Collect ADA samples min predose and at the end of the study
 - For studies with longer duration, the suggestion is to include sample collection during the study as well
Whether to analyse the samples

- Samples should only be analysed if the PK/TK/PD profiles or safety findings indicate a potential impact due to the presence of antibodies aligned with ICH S6
 - If needed for the interpretation

- Important to report back to the lab responsible for ADA analysis, if the analysis is required or not
 - If possible, do the PK/TK/PD and safety evaluation on interim results to reduce the potential delay
Design of non-clinical TK studies

- Studies with full TK profiles:
 - Main study animals will have TK and ADA samples collected
 Or
 - Main study animals without TK samples but with ADA samples collected
 - TK animals with full profile and ADA samples collected

- Studies with sparse sampling:
 - Main study animals with TK samples collected as sparse sampling and ADA samples collected
 Or
 - Main study animals without TK samples but with ADA samples collected
 - TK animals with sparse sampling and ADA samples collected
Evaluation of TK/PD and safety findings with ADA present – full TK profile available

- Expected TK full profiles for main study animals
- Perform full analysis with and without ADA positive animals
- Exclude the ADA positive animals for the TK evaluation
- Include all animals regardless of ADA status
- Exclude TK data only if impacted by ADA (a priori criteria)
- Apply a case-by-case approach

Consideration:
- How many animals should be included in the TK exposure used for human exposure ratio?
Evaluation of TK/PD and safety findings with ADA present – Additional challenges

- Sparse sampling:
 - How to remove ADA positive animals as it might lead to unbalanced number of results for each timepoint
 - TK response compose of primary concentrations from few animals

- TK vs main study animals
 - No direct comparison between TK and PD & safety evaluation
 - Important with ADA sampling and analysis of samples in the same manner as for TK animals
Example 1: Monkey DRF study

- A BsAb targeted on an IO therapy for solid tumor

- A multiple dose DRF study was conducted in cynomolgus monkeys
 - (2/gender/dose level) at low, middle and high dose levels
 - Once weekly dosing for total of 5 doses; study was ended 24 hrs after 5th dose
 - PK samples were collected after 1st and 4th doses
 - ADA samples were collected at baseline, Day 15, 22 and 29 pre-dose
Example 1: Monkey DRF study

Questions:
- Should the samples have been analyzed for ADA?
- How to report PK?
- What to use for exposure ratio?
Example 1: Monkey DRF study

Questions:
- Should the samples have been analyzed for ADA?
- How to report PK?
- What to use for exposure ratio?

Observation and discussion:
- TK exposure level was significantly reduced in most animals
- Samples were analysed for ADA
- TK exposure reduction was most likely due to ADA formation

Overall Summary: ADA data supported the TK analysis. The impact of ADA on TK was clear.
Example 2: 13 week toxicity study in monkey

- Weekly SC administration to 6 animals/gender/group in Group 3 and 4

- Blood samples for TK evaluation were taken from animals after dosing at: Day 1 (Week 1), Day 36 (Week 6) and Day 85 (Week 13) at the following nominal time points: Pre-dose and 24, 48, 96, 120 and 168 hours after dose administration

- Sampling for antibodies as below: Pre-treatment, Week 6, Week 13 (+ recovery for group 4)
Example 2: 13 week toxicity study in monkey

Observations and discussion:
• Several animals with reduced or low exposure after repeated dosing
• Should the samples have been analyzed for ADA?
• How to report TK and calculate human exposure ratio?
Example 2: 13 week toxicity study in monkey

Observations and discussion:
- Several animals with reduced or low exposure after repeated dosing
- Should the samples have been analyzed for ADA?
- How to report TK and calculate human exposure ratio?

Approach:
- Samples were not analysed for ADA
- The impacted animals were excluded from the start
- Omitting the results did not change the conclusion of the study
Example 3: Study using sparse sampling

<table>
<thead>
<tr>
<th>Animal</th>
<th>2 h</th>
<th>4 h</th>
<th>8 h</th>
<th>12 h</th>
<th>16 h</th>
<th>24 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BLQ</td>
<td>BLQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>BLQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>BLQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>BLQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>BLQ</td>
<td>BLQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>2</td>
<td>60</td>
<td>35</td>
<td>6</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

Evaluation based of TK concentrations:
- Could the TK be impacted by ADA?
 - Increased or decreased exposure?
 - Could ADA have impacted the TK method?
- Should samples be tested for ADA?
 - Is it known from other studies, if ADA is present and the impact on TK, PD and safety
 - Would it impact the decision to go into FHD?
Example 3: Study using sparse sampling

<table>
<thead>
<tr>
<th>Animal</th>
<th>2 h</th>
<th>4 h</th>
<th>8 h</th>
<th>12 h</th>
<th>16 h</th>
<th>24 h</th>
<th>ADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BLQ</td>
<td></td>
<td>BLQ</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td>BLQ</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
<td>BLQ</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>30</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td></td>
<td>BLQ</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>BLQ</td>
<td></td>
<td>BLQ</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Mean (N=3) 1 20 12 2 3 3 NA

Mean ADA neg NA 29 30 NA 3 3 NA

ADA samples were analysed: How should the data be reported?
- With and without ADA positive animals?
- If reported for ADA negative animals, the number of animals included at each timepoints varies from 0 to 2
- What TK values should be used for human exposure ratio?
- Representative for the TK animals?
- Any sign of impact of PD or safety based on the ADA response

Conclusion
- 3 animals were the primary driver of the TK response
- TK decreased by the ADA response
- Concern that ADA neg will be unbalanced and only include 4 sampling time points
- Justification needed to document how Sponsor report the data
Summary

- Animals with full TK profile or with sparse TK sampling
- Impact on TK/PD or safety parameters
 - Should ADA samples be analysed?
 - Number of animals with impacted?
 - Decrease or an increase in the TK response?
- Evaluation of TK data:
 - Including (all animals or with and without ADA positive animals)
 - Excluding (all ADA positive animals or only excluding ADA positive animals if impact \((a \ priori\) criteria)
 - Apply a case-by-case approach
Acknowledgment

EBF ADA in non-clinical studies Team:
- Anna Laurén
- Deborah McManus
- Joanna Grudzinska-Goebel
- John Cook
- Jonas Blaes
- Kyra Cowan
- Madeleine Dahlbäck
- Robert Nelson
- Susanne Pihl
- Jo Goodman

Thank to all European Bioanalysis Forum members for very valuable input
Contact Information

Questions: info@e-b-f.eu