Pharma/CRO alliance: what are the keys of success in transfer of assays

Lieve Dillen – Janssen R&D – Development Bioanalysis
EBF open meeting 17-20 November 2020

Pictured above: The structure of HIV.
• Introduction – changing landscape – situation anno 2020
• Internal method development
• Transfer to CROs and method development follow up
 • functions involved @ pharma and @ CRO
 • Information shared
 • Scientific discussions
 • Information exchange – when and how to communicate
• Trouble shooting – examples
• Conclusions: what are the keys?
Changing Landscape over the years

Some standard discovery bioanalytical support (entire process) outsourced to CRO

- Preclinical GLP: internal bioanalytical GLP work stopped
 - preclinical GLP tox programs: outsourced

- Clinical studies beyond POC: outsourced

- Preclinical GLP: also internal in vivo activities stopped
 - Mechanistic studies
 - Bioanalytical method development
 - Bioanalytical method validation
 - GLP Tox
 - FIH clinical studies

- Mechanistic studies
- Bioanalytical method development
- Bioanalytical method validation
- GLP Tox
- FIH clinical studies
Current model describing bioanalytical phases

Bioanalytical strategy for post candidate selection drugs in house (green) and at CRO (orange)

<table>
<thead>
<tr>
<th>Dose-escalation studies (dose selection for GLP tox studies)</th>
<th>Method development Robustness evaluation</th>
<th>Transfer method to CRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>method development and validation</td>
<td>Bioanalysis of GLP studies</td>
<td>Method development for FIH Scientific Validation/Regulatory Validation</td>
</tr>
<tr>
<td>Bioanalysis of FIH SAD and MAD</td>
<td>Method development (human plasma)</td>
<td>Bioanalysis in support of clinical program</td>
</tr>
</tbody>
</table>
Lean internal method development process

• Drug candidate results from internal portfolio
 • Tailored but as much as possible standardized approach
 • Collect physicochemical and stability information of the drug
 • Select optimal IS (analogue vs STIL dependent on availability)
 • Collect info on expected exposure range in studies
 • Species considered in GLP
 • LC-MS/MS optimization (ionization, retention, phospholipids, ...)
 • Sample prep, matrix effects, adsorption and stability
 • Robustness run = 1 A&P run (QCs 6 fold including LLOQ)
 • Transfer summary document shared

• Drug candidate acquired through in-licensing, acquisitions
 • Method evaluated – decided whether to keep at CRO of partner or switch to preferred CROs
 • Method development in function of troubleshooting.
Transfer of the method: interactions

Sponsor organisation

- Operational team
 - Lead
 - method developers
 - analysts

- Bioanalytical Project Management

CRO organisation

- Method development team
 - Lead
 - method developers

- Operational team
 - Lead per project
 - analysts
Transfer of the method

- Via email of the sponsor’s project manager to SD method development @CRO (and project manager @CRO if assigned).
 - Detailed method description
 - Structure and physicochemical properties
 - Summary of available information on metabolites, stability

- Follow up in TC
 - Detailed information can be disclosed (individual experiments)
 - Discussion on approach at CRO

- Example of method transfer documents shared

- Secured share points accessible for CRO and sponsor to exchange results/protocols
- During method development weekly updates
Considerations for modifications upon transfer of assay

Most frequent changes discussed with CRO:

- chromatographic system (UHPLC or HPLC platform) (driven by availability of # instruments) – caveats: carryover - resolution with a metabolite
- MS platform (eg Sciex 6500 proposed while method was developed on API4000) – risk of saturation at ULOQ
- injection volume (combined with additional dilution of supernatant) – solubility, carryover, signal-to-noise ratio can be impacted
- regression model/weighing factors
- preparation of calibration curves (plasma calibration samples prepared in bulk versus calibration samples spiked freshly from solvent based spiking solutions)
Why do methods not (always) transfer one to one?

- Even with identical equipment same performance not always realized
- LC-MS tubings/lengths and ID are different
- MS conditions:
 - Electrospray conditions (position of LC outlet versus orifice)
 - Condition of ionization source - maintenance and intensity/type of samples analysed
 - Calibration
 - Resolution/IE settings of the quadrupoles
- Perceived unimportant details are unintentionally not included
- Solvents are from different quality/vendors
- Consumables are different and can impact method performance
- Storage conditions - walk in freezers – exposure to light
- Robust method should be tolerant to small changes
Example: unintentional change/unidentified impact

- Extensive internal experience with assay – challenging project - stability issues
 - Preclinical species validated internally
 - Criticality in the assay seems a small detail
 - Small amounts of organic were not tolerated
 - pH during precipitation critical

- Transfer of assay to CRO – with extensive discussions on the details of the assay
- Assay performance issues during sample analysis
 - assay transferred back to method development team@CRO
- Adapted method instructions were **accidently not shared with sponsor**
 - New method developer @CRO was not informed on critical aspect
 - New assay successfully validated and applied in GLP studies

- Study selected during sponsor audit – results all within compliance but scientifically incorrect
- Revalidation and re-analysis needed
- Continued communication within and between organisations is key
Example: unnotified difference

- Assay for drug candidate validated @ sponsor’s lab
- Beyond phase 1: outsourced to CRO
- @CRO: LTS (-20°C) > 1 year failed > -20% bias re-analysis confirmed the observation
- @sponsor: > 2 years LTS proven
- Interaction CRO – sponsor: additional investigation @ sponsor
 - Stress light stability evaluation demonstrated light sensitivity
 - Walk in freezer (daily illumination) @CRO identified as root cause
 - Prolonged storage with intermittent exposure to light responsible for degradation
- Interaction and open discussion between partners is key
 - Shared responsibility
Example: in licensed compound – validated method – failed ISR

- 2-in-1 assay quantifies parent (R-CO-NH2) & M1 (R-COOH) validated at first CRO (not preferred provider) – no initial internal involvement

- ISR passes for parent but consistently failed for M1 (in clinical and GLP studies)

- Investigation in sponsor’s lab:
 - M1 results reproducible after single dosing but not after multiple dosing
 - Investigation revealed study samples contain high levels of M1-glucuronide (up to 80x M1 conc. after RD)
 - Assay uses evaporation step; M1-glucuronide can decompose to M1
 - Assay re-developed without evaporation step; issue resolved

- New Assay conditions transferred to CRO
 - Revalidation

- Not all information is known during initial method development – responsibility of project manager to keep abreast of new information

% difference re-assay-original

- parent
- M1
introducing new approaches: CMS

- Sponsor: capillary microsampling introduced as standard sampling technique in rodent GLP studies

- Sponsor’s experience in validated CMS assays halted with decision to stop internal GLP
- Sponsor built substantial experience in preclinical non GLP studies but experience with validating the assays was limited
- Mutual visits to CRO and sponsor organized to train practical aspects
introducing new approaches: CMS

• Considerations to be discussed upfront method development
 • Study samples diluted in buffer
 • Calibrators in capillaries
 • Calibrators in diluted plasma
 • Calibrators spiked to diluted plasma
 • QCs sampled as study samples
 • Prepare in capillaries – wash out together with study samples
 • ISR samples – diluted plasma samples for re-analysis
 • Additional stability program in diluted plasma
 • Additional burden for method development and bioanalytical lab
Example: Capillary microsampling

- Project: parent drug validated @ CRO - 2 metabolites qualified assay
- In preclinical program: 2 metabolites added to the validated assay
 - Internal standards: parent drug and M1 STIL available; STIL M1 used for M2
- During GLP program switched to CMS -> revalidation @ CRO
 - Combined validated assay for 3 analytes
 - STIL synthesis for M2
 - Calibrators prepared in diluted plasma
 - QCs in capillaries
- Validation: some STS and LTS failed for metabolites
 - Preparation errors due to complexity
 - Building experience with capillaries
 - Variability especially for M2
- Mitigation discussed: scrutinize differences in lab practices

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>Bias(%)</th>
<th>Time (days)</th>
<th>Bias(%)</th>
<th>Time (days)</th>
<th>Bias(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52 (-20°C, cap)</td>
<td>-15.3</td>
<td>74 (-20°C, cap)</td>
<td>-16.7</td>
<td>154 (-20°C, cap)</td>
<td>-13.0</td>
</tr>
<tr>
<td>52 (-20°C, BSA diluted)</td>
<td>-4.9</td>
<td>74 (-20°C, BSA diluted)</td>
<td>-7.8</td>
<td>154 (-20°C, BSA diluted)</td>
<td>-22.3</td>
</tr>
<tr>
<td>52 (-70°C, cap)</td>
<td>-2.8</td>
<td>74 (-70°C, cap)</td>
<td>-2</td>
<td>154 (-70°C, cap)</td>
<td>-8.9</td>
</tr>
<tr>
<td>52 (-70°C, BSA diluted)</td>
<td>-10</td>
<td>74 (-70°C, BSA diluted)</td>
<td>-10.4</td>
<td>154 (-70°C, BSA diluted)</td>
<td>-9.7</td>
</tr>
</tbody>
</table>

LTS for M2 (LQC 30 ng/mL)
Example: Capillary microsampling

• Mouse GLP study:
 • Many analytical runs rejected for M2 (QCs outside criteria)
 • ISR for M2 rejected due to QCs out of acceptance criteria
 • ISR results for M2 were within criteria

• Combined CRO and Sponsor investigation
 • Wash out solution slightly different
 • Sponsor used solvent spikes as calibration standards
 • Light sensitivity in solvent for M2 (amber versus foil protection)

• Not trivial to identify root cause but probably related to complexity (combined 3 analytes, smaller sample volumes, building experiences with capillaries)
Keys to successful method transfer

- Majority of assays transfer without problems
- Info sharing – Info sharing - Info sharing
- The devil is in the detail
- Regular/continued communication - transparency/open minded – provide the details (reluctance or only partial disclosure of raw data experienced)
- Install software tools – share points or other secured portals to exchange (raw) data
- Building relationships/partnership at different levels (preferred partners)
 - Understand mutual processes
- Building trust and respect – especially in difficult projects – be constructive
- Consider external lab as an extension of your own lab
Acknowledgments

• Nico van de Merbel
• Remco Koster
• PRA bioanalytical team
• Tom Verhaeghe
• Marc De Meulder
• Hans Stieltjes
• Development bioanalytical department