A Method Development Case Study – Successes and Learnings from a CRO-Pharma Alliance

European Bioanalysis Forum Open Symposium

Stephanie Cape, PhD
Director – Scientific Delivery
Scientific Affairs, Covance

November 19, 2020
AstraZeneca – Covance Partnership
Scientist-to-Scientist Communication

Established in 2011
Joint teams and governance
Dedicated Scientific Advisory Group
- Encourage direct scientist to scientist communication
- Support joint publications and presentations
- Proactively evaluate portfolio technology needs and changing regulatory landscape
- Provide scientific guidance and awareness to operational teams

Executive Steering Team
Operational Steering Team
Delivery Team
Scientific Advisory Group

Method Development Process
Planning and Preparation

Scientific Advisory Group
- Proactive portfolio review
- Early engagement
- Elevate and educate scientific workforce
- Issue guidance for operational teams

Joint Bioanalytical Leads
- Requirements intake
- Timing
- Intended use of the data
- Regulatory considerations
- Bioanalytical plan

Project Execution
- Leverage previous knowledge
- Direct scientist-scientist communication
- Issue escalation
Spotlight on Antisense Oligonucleotides

Bioanalytical Plan

Overview

- Antisense Oligonucleotide (ASO)
 - Short, Single stranded nucleic acids
 - Target a single genetic pathway
 - Bind RNA by Watson-Crick base pairing
 - Highly polar

Figure 1. ASO binding to the targeted RNA*

*C. Frank Bennett, Therapeutic Antisense Oligonucleotides Are Coming of Age. Annual Review of Medicine (2019)0:307-21
Spotlight on Antisense Oligonucleotides

Bioanalytical Plan

Platform Considerations

► Common Technical Challenges

- Stability
- Cross-reactivity
- Non-specific binding
- Sensitivity
- Chromatography

Figure 8. Dependence of assay sensitivity on the length/size of analyte oligonucleotide

Knowledge Transfer
CASE STUDY 1

CHALLENGE
Transfer of complex method details

SITUATION
► Upcoming project:
 • Human plasma PK analysis
 • Antisense oligonucleotide
 • Low LLOQ required
► Team held knowledge transfer meeting months in advance of lab work

KEY TAKEAWAY
► Restructure timing of communication to better align with project activities
 • Initial discussion: align materials, understand expertise needed, general schedule
 • Kick-off meeting: Techniques and Details

Optimize Knowledge Transfer Processes
Complex Troubleshooting

CASE STUDY 2

CHALLENGE
Scientific issues during method development/method transfer

SITUATION
- Human plasma PK assay
- Method issues when the assay changed hands – determined to be due to assay performance issues with freshly prepared, never frozen standards
- High pressure, high visibility
- Multiple stakeholders involved

KEY TAKEAWAY
- Operations team drove troubleshooting
- Work as team focused on the solution
- Balance communication
 - Provide clear summary of plans and results
 - Seek feedback
 - Don’t delay to await approval

Earn Trust and Empower Teams
CASE STUDY 3

CHALLENGE
Unsurmountable obstacle, requires pivot

SITUATION
► Human plasma and urine assays
► Initial bioanalytical plan called for hybridization based assay
► Scientific issues were escalated to the joint bioanalytical leads
► Team decided to commence LC-MS/MS method development in parallel

KEY TAKEAWAY
► Methods were successfully developed and validated
► Scientists came together to assess
► When faced with unsurmountable obstacle, team quickly pivoted to alternative solution to deliver results

Operate with Transparency and Flexibility
CASE STUDY 3

Clinical Method Development

Human Plasma LC-MS/MS Method

- Leveraged lessons learned from previous experience
- Stable isotope labelled internal standard
- 0.500 ng/mL LLOQ
- RP-IPC utilizing TEA and HFIP
- Confirmed selectivity against 5 metabolites
- BSA included in intermediate solutions to avoid non-specific binding
- MD and VAL progressed quickly and smoothly

Human plasma 0.5 ng/mL
CASE STUDY 3

Clinical Method Development

Human Urine LC-MS/MS Method

- Leveraged previous experience
- Stable isotope labelled internal standard
- 1 ng/mL LLOQ
- Non-specific binding to tubes
 - 53% loss after 5 transfers
 - Added Tween to address
- Further testing discovered non-specific binding to urine precipitate as well
 - Recovery with CHAPS
CASE STUDY 3

Clinical Method Development

Conclusions

► Suite of methods validated
 ► Human Plasma via LC-MS/MS and ECL
 ► Human Urine via LC-MS/MS
 ► Anti-drug antibody

► Issues were escalated with transparency leading to decision to commence parallel method development on alternate platform to commence

► Enables head-to-head comparison of platforms to better inform strategy

► Approach evolved from hELISA/ECL to LC-MS/MS as primary technology
Method Development Process
Overview & Highlights

Scientific Advisory Group
- Proactive portfolio review
- Early Engagement
- Sharing previous methods & lessons learned
- Issue guidance for operational teams

Joint Bioanalytical Leads
- Requirements intake
- Timing
- Intended use of the data
- Regulatory considerations
- Bioanalytical plan

Project Execution
- Leverage previous knowledge
- Direct scientist-scientist communication
- Issue escalation

Communicate openly and honestly

Optimize processes for efficient knowledge transfer

Leverage each contributor's unique expertise

Learn and progress
Acknowledgements

Yan Li
Cecilia Arfvidsson
Mark Hoffmann
Aaron Ledvina
Brian Dayton
Jill Uhlenkamp
Kate Chen
Troy Voelker
Matt Ewles
Paul Severin