Tricky analyte, challenging matrix and a new high sensitivity analytical platform:

How to overcome major challenges for a successful biomarker assay validation on the SMCxPRO® platform

Katharina Schutz, Alessandra Bühler, Eginhard Schick, Stéphanie Vauléon

Roche Pharma Research and Early Development, Bioanalytical R&D, Roche Innovation Center Basel

13th EBF Open Symposium, 17-Nov-2020
Challenging the Quantification Limit of LBAs: Case Study

Introduction

Tricky analyte, challenging matrix

- Biomarker for neurodegenerative disease in human cerebrospinal fluid (CSF)
- Analyte heterogeneous in length among patients & prone to aggregation
- Low pg/mL concentration (low fM range)
- Exploratory assay available on the Erenna® platform (Merck) in a research laboratory

Context of use: core surrogate biomarker in late stage clinical development:

- Assay transfer to a regulated laboratory mandatory
- Full assay validation required
- Highest possible sensitivity to be achieved
Assay Transfer Strategy

Research lab (CRO)
Assay qualification

Regulated lab (CRO)
Full assay validation
Clinical sample analysis

Roche internal Reg BA lab
Establishment of platform
Full assay validation

Erenna®: end of support announced for 2021

Q1 - Q2 2019
failed

Q3 2019 - Q2 2020

SMCxPro® introduced in 2018

S. Vauléon, 13th EBF Open Symposium, 17-Nov-2020
Single Molecule Counting Technology
Erenna® Platform

• Ultra high sensitivity platform originally developed by Singulex®
• Manual bead-based sandwich immunoassay in 96-well plate format
• Elution of detection antibodies from immune complexes
• Quantification via capillary flow fluorescence detection

S. Vauléon, 13th EBF Open Symposium, 17-Nov-2020
Single Molecule Counting Technology
SMCxPro® Platform

- Same bead-based immunoassay as Erenna® (identical kits)
- Readout in 384-well plate with a rotating laser allowing for individual photon counting
- Sophisticated laser optic: daily self-calibration and weekly external calibration of instrument

S. Vauléon, 13th EBF Open Symposium, 17-Nov-2020
Technical challenges

• No proper assay signals obtained during on site analyst training using IL6 assay kit

• Red flags popped up at calibration: several visits of engineer required for laser & software adjustment

• The fixed, automatic distinction between background noise and event (event threshold) lead to artifacts at very low signal levels. Demo software update offered.

→ Intense information exchange with Merck team to solve issues
Robustness of the SMCxPRO® Platform
Device Performance Monitoring

Systematic checks implemented to discriminate between assay problems and device related issues

• Reading plate (96-well quadrant) loaded with unique concentration of detection antibody providing a low assay signal and stored refrigerated for 1 month

• Daily analysis and signal precision across plate calculated

• Plate precision ranged between 6-11%; higher compared to ELISA

Mitigation: Samples analyzed in triplicates, possibility to remove one outlier, replicate precision to be ≤20%

S. Vauléon, 13th EBF Open Symposium, 17-Nov-2020
Robustness of the SMCxPRO® Platform

Pipetting & Bead Handling

Non-automated high sensitivity assay

- Each assay step crucial
- Visual check of proper bead peletting & resuspension is essential
- Pipetting out of biosafety cabinet to avoid air flows (except biosample preparation)

Proper resuspension of bead stock (volume of aliquots)

Pipetting of bead solution on 96 well plate with manual pipette instead of electronic pipettes (multi-stepper) to avoid plate inhomogeneity

Homogenization of bead solutions during incubation steps: homogenous shaking over the plate to be ensured (selection of shaker crucial)

Accuracy of plate transfer (10 μL out of 12 μL!)

S. Vauléon, 13th EBF Open Symposium, 17-Nov-2020
Robustness of the SMCxPRO® Platform
Microplate Washer Technology

• SMCxPro delivered with BioTek 405 TS Plate Washer: aspiration washer used with a magnetic carrier plate

• Washer settings pre-adjusted at manufacturing but not re-adjusted/checked at installation (Merck engineers now trained)

• Device adjusted by BioTek in Nov 2019: performance improved but still inhomogeneity throughout plate

Assay signal, unique concentration of analyte loaded all over the plate
Centrifugal Blue® Washer designed for cell- and bead-based assays

Wash step example:
- Plate 2 min on magnetic carrier
- Buffer spinned out at 800 rpm
- 2 cycles of buffer dispense & centrifugation

Optimization of wash program required

Better signal homogeneity obtained: Blue® Washer used from there

Robustness of the SMCxPRO® platform
Microplate Washer Technology
Robustness of the SMCxPRO® Platform
Accuracy and Precision Data After Optimization – Research Grade Reagents

Calibration samples

<table>
<thead>
<tr>
<th>Run Date</th>
<th>Nom Conc [pg/mL]</th>
<th>0.00</th>
<th>1.63</th>
<th>4.08</th>
<th>10.2</th>
<th>25.6</th>
<th>64.0</th>
<th>160</th>
<th>400</th>
<th>S/N at LLOQ</th>
<th>S/N at ULOQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-Dec-2019</td>
<td>Signal [RU]</td>
<td>1.60</td>
<td>5.47</td>
<td>10.6</td>
<td>23.1</td>
<td>56.2</td>
<td>114</td>
<td>260</td>
<td>407</td>
<td>3.4</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Conc [pg/mL]</td>
<td>1.63</td>
<td>4.09</td>
<td>10.1</td>
<td>26.7</td>
<td>59.6</td>
<td>174</td>
<td>386</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07-Jan-20</td>
<td>Signal [RU]</td>
<td>1.84</td>
<td>5.39</td>
<td>10.5</td>
<td>27.6</td>
<td>69.1</td>
<td>165</td>
<td>437</td>
<td>828</td>
<td>3.0</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>Conc [pg/mL]</td>
<td>1.67</td>
<td>3.88</td>
<td>10.7</td>
<td>26.0</td>
<td>60.4</td>
<td>169</td>
<td>394</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07-Jan-20</td>
<td>Signal [RU]</td>
<td>7.80</td>
<td>15.7</td>
<td>35.2</td>
<td>91.6</td>
<td>186.0</td>
<td>550.0</td>
<td>1477</td>
<td></td>
<td>3.4</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Conc [pg/mL]</td>
<td>1.59</td>
<td>4.18</td>
<td>10.4</td>
<td>27.8</td>
<td>56.2</td>
<td>162</td>
<td>423</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09-Jan-20</td>
<td>Signal [RU]</td>
<td>2.83</td>
<td>6.39</td>
<td>12.7</td>
<td>29.3</td>
<td>72.1</td>
<td>169</td>
<td>409</td>
<td>1184</td>
<td>3.4</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Conc [pg/mL]</td>
<td>1.62</td>
<td>4.1</td>
<td>10.4</td>
<td>26.5</td>
<td>62</td>
<td>150</td>
<td>428</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-Jan-20</td>
<td>Signal [RU]</td>
<td>2.02</td>
<td>4.37</td>
<td>7.7</td>
<td>16.7</td>
<td>37.7</td>
<td>85.9</td>
<td>230</td>
<td>601</td>
<td>2.2</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>Conc [pg/mL]</td>
<td>1.67</td>
<td>4.0</td>
<td>10.3</td>
<td>25.3</td>
<td>59.7</td>
<td>163</td>
<td>431</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-Jan-20</td>
<td>Signal [RU]</td>
<td>2.02</td>
<td>8.12</td>
<td>16.6</td>
<td>35.5</td>
<td>82.3</td>
<td>188</td>
<td>566</td>
<td>1272</td>
<td>4.0</td>
<td>630</td>
</tr>
<tr>
<td></td>
<td>Conc [pg/mL]</td>
<td>1.57</td>
<td>4.3</td>
<td>10.4</td>
<td>25.2</td>
<td>58.6</td>
<td>176</td>
<td>397</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-Jan-20</td>
<td>Signal [RU]</td>
<td>3.09</td>
<td>8.22</td>
<td>16.9</td>
<td>32.6</td>
<td>90.6</td>
<td>220</td>
<td>488</td>
<td>1343</td>
<td>2.7</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td>Conc [pg/mL]</td>
<td>1.61</td>
<td>4.4</td>
<td>9.3</td>
<td>27.3</td>
<td>67.4</td>
<td>150</td>
<td>411</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-Jan-20</td>
<td>Signal [RU]</td>
<td>3.54</td>
<td>11.1</td>
<td>18.8</td>
<td>45.7</td>
<td>102.0</td>
<td>300</td>
<td>749</td>
<td>1730</td>
<td>3.1</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td>Conc [pg/mL]</td>
<td>1.64</td>
<td>4.0</td>
<td>10.9</td>
<td>24.1</td>
<td>66.1</td>
<td>160</td>
<td>399</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-Jan-20</td>
<td>Signal [RU]</td>
<td>6.19</td>
<td>11.5</td>
<td>22.3</td>
<td>67.2</td>
<td>164.0</td>
<td>388</td>
<td>954</td>
<td>2320</td>
<td>1.9</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>Conc [pg/mL]</td>
<td>1.72</td>
<td>3.6</td>
<td>11.2</td>
<td>27.1</td>
<td>63.5</td>
<td>152</td>
<td>396</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Conc [pg/mL]</td>
<td>1.64</td>
<td>4.05</td>
<td>10.4</td>
<td>26.2</td>
<td>61.5</td>
<td>162</td>
<td>407</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interbatch Accuracy [%]</td>
<td>100.4</td>
<td>99.3</td>
<td>102.1</td>
<td>102.4</td>
<td>96.1</td>
<td>101.4</td>
<td>101.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interbatch Precision [%]</td>
<td>2.8</td>
<td>5.8</td>
<td>5.2</td>
<td>4.5</td>
<td>5.9</td>
<td>5.8</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total error [%]</td>
<td>3.2</td>
<td>6.5</td>
<td>7.2</td>
<td>6.9</td>
<td>9.8</td>
<td>7.2</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QC samples

<table>
<thead>
<tr>
<th>Run Date</th>
<th>LQC</th>
<th>MQC</th>
<th>HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-Dec-2019</td>
<td>4.50</td>
<td>40.00</td>
<td>300</td>
</tr>
<tr>
<td>07-Jan-20</td>
<td>5.16</td>
<td>46.5</td>
<td>308</td>
</tr>
<tr>
<td>09-Jan-20</td>
<td>5.16</td>
<td>46.5</td>
<td>304</td>
</tr>
<tr>
<td>17-Jan-20</td>
<td>4.95</td>
<td>46.1</td>
<td>306</td>
</tr>
<tr>
<td>20-Jan-20</td>
<td>6.21</td>
<td>47.2</td>
<td>301</td>
</tr>
<tr>
<td>21-Jan-20</td>
<td>6.37</td>
<td>32.1</td>
<td>321</td>
</tr>
<tr>
<td>10-Jan-20</td>
<td>4.39</td>
<td>40.8</td>
<td>299</td>
</tr>
<tr>
<td>9-Jan-20</td>
<td>5.06</td>
<td>40.0</td>
<td>295</td>
</tr>
<tr>
<td>20-Jan-20</td>
<td>4.88</td>
<td>44.1</td>
<td>336</td>
</tr>
<tr>
<td>21-Jan-20</td>
<td>4.88</td>
<td>44.1</td>
<td>336</td>
</tr>
</tbody>
</table>

QC sample data acknowledge for signal homogeneity over the plate

S. Vauléon, 13th EBF Open Symposium, 17-Nov-2020
Towards Assay Validation
Labeling of Critical Reagents

Initial procedure: use of SMC labeling kits
• Black box approach, no quality control for product available
• Batch-to-batch variability observed

Optimization at Roche Diagnostics
• Analytical characterization before and after labeling (purity, incorporation rate, fluorescence emission, functional testing)
• Buffer exchange/desalting optimized
• Variation of labeling ratio to enhance S/N ratio in assay

Performance of labeled antibodies
• S/N ratio at LLOQ
 o Labeling with kits: 2 to 4
 o Optimized reagents: 5 to 7
• Long term stability assessed
• CoA generated

S. Vauléon, 13th EBF Open Symposium, 17-Nov-2020
Towards Assay Validation

Assay Matrix

Sample collection
- Sample analysis in triplicates, 135 μL sample per well: 500 μL aliquots required
- Samples shock frozen directly after preparation to ensure analyte integrity

Surrogate assay matrix
- Large volume of rare matrix: surrogate assay matrix for preparation of calibration and QC samples
- Ready to use artificial CSF

Human CSF
- Commercially available human CSF issued from leftover samples: uncontrolled chain of custody
- Samples gave high background → selectivity demonstrated via parallelism assessment

S. Vauléon, 13th EBF Open Symposium, 17-Nov-2020
Towards Assay Validation
Reference Standard

• Analyte heterogenous in length among patients: surrogate reference standard of defined length

• Suitability of surrogate reference standard demonstrated on
 – recombinant fragments: response of fragments of different lengths parallel to reference standard curve
 → relative quantitative assay

 – patient samples via parallelism experiment

S. Vauléon, 13th EBF Open Symposium, 17-Nov-2020
Towards Assay Validation

Validation Strategy

Mitigation of assay variability

• Samples analyzed in triplicates, possibility to remove one outlier, precision to be ≤20%
• Acceptance criteria extended from ±20%/±25% A&P to ±30% based on pre-validation data

Validation parameters

– Inter- and intra-assay accuracy and precision on QC samples (surrogate matrix)
– Inter-assay precision on patient samples
– Parallelism on patient samples
– Determination of LOD
– Plate homogeneity
– Hook effect
– Interferences
– Stability in surrogate matrix
– Incurred sample stability

Validation results

• In house validation completed within one month. All pre-set criteria met. Target LLOQ validated

S. Vauléon, 13th EBF Open Symposium, 17-Nov-2020
Challenging the Quantification Limit of LBAs: Case Study

Conclusion

- Discrimination between technical and analytical challenges allowed for successful assay optimization & validation

- SMCxPro platform requires lab excellence:
 - extended control of devices
 - experienced & trained analysts

- Communication between manufacturers and labs key factor for implementation of new analytical platforms

- Deep in-house assay understanding allowed for efficient trouble shooting at CRO: external assay validation successfully completed

GxP lab (CRO)
Full assay validation

Q1-Q3 2020

S. Vauléon, 13th EBF Open Symposium, 17-Nov-2020
Acknowledgement

pRED Bioanalytical R&D
• Katharina Schutz
• Alessandra Bühler
• Eginhard Schick
• Benoit Massonnet
• Julian Meier
• Martin Schaefer
• Nicole Justies
• Jasna Canadi
• Matthew Barfield
• Julia Heinrich

Roche Diagnostics
• Bernhard Maximilian Roettig, Tobias Oelschlaegel

pRED High Throughput Screening
• Philippe Hartz

Clinical Development Project Team

Merck
• Olivier Weyel, Robert Hardcastle, Christian Haag

BlueCatBio
• Wolfgang Mann

CROs Lab Teams

S. Vauléon, 13th EBF Open Symposium, 17-Nov-2020
Doing now what patients need next